
European Maritime Safety Agency System and Application Technical Landscape

1

ICT Architecture

System and Application Technical Landscape

European Maritime Safety Agency System and Application Technical Landscape

2

Document History

Title System and Application Technical Landscape

Version 29 from 06/06/2016

European Maritime Safety Agency System and Application Technical Landscape

3

Table of Contents

Definitions, Acronyms and Abbreviations ...4

1. Introduction and Objectives..6

2. System Landscape ..7
2.1. High Level Network Schema... 7
2.2. Data Links ... 7
2.3. Network Security .. 7
2.4. Proxy Policy ... 8
2.5. Network Load Balancing .. 9
2.6. High Level Virtual Infrastructure Schema ... 9
2.7. Virtual Infrastructure Services .. 9
2.8. Application Requirements For Virtual Infrastructure... 10
2.9. Environments ... 10
2.10. Disaster Recovery ... 13

3. Application Landscape..17
3.1. Architecture Overview ... 17
3.2. Client Environment and Client Tier .. 18

3.2.1.Web Browser Environment .. 18
3.2.2.Client Application ... 19
3.2.3.External Systems ... 19

3.3. Application Environment .. 20
3.3.1.Application Server .. 20
3.3.2.EIS Tier .. 21

3.4. Security... 24
3.5. Reporting Platform.. 24
3.6. Geographic Information System ... 24

3.6.1.Electronic Nautical Charts.. 24
3.7. Logging ... 24
3.8. Storing Times and Dates.. 25

4. Service Oriented Architecture ...26
4.1. Service Consumers ... 27
4.2. Shared Service Infrastructure... 27

5. LDAP Structure for Maritime Applications..28
5.1. LDAP Structure... 28
5.2. Authentication Service... 28
5.3. Authorization Services ... 29

6. Software Versioning Scheme ..30

7. Summary ...31

Annex 1 ..33

European Maritime Safety Agency System and Application Technical Landscape

4

Definitions, Acronyms and Abbreviations

Definition Description
AJAX Asynchronous JavaScript and XML

BCF Business Continuity Facility

BMP Bean-Managed Persistence

CMP Container-Managed Persistence

DAO Data Access Object

DTO Data Transfer Object

DB Database

DC Data Centre

DHTML Dynamic HTML

DMZ Demilitarized zone

DNS Domain Name System

EIS Enterprise Information System

EJB Enterprise Java Bean

EMSA European Maritime Safety Agency

ESB Enterprise Service Bus

FTP File Transfer Protocol

GIS Geographic Information System

GUI Graphical user interface

HA High Availability

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over Secure Socket Layer

IPSEC Internet Protocol Security

ISP Internet Service Provider

JCA JAVA EE Connector Architecture

JDBC Java Database Connectivity

JDK Java Development Kit

JEE Java Enterprise Edition

JMS Java Message Service

JSF Java Server Faces

JSP Java Server Pages

JVM Java Virtual Machine

LDAP Lightweight Directory Access Protocol

Mbps Megabit per second

MOM Message Oriented Middleware

NAT Network Address Translation

OAM Oracle Access Management

OIM Oracle Identitiy Management

OES Oracle Entitlement Server

OS Operating System

OSB Oracle Service Bus

OWASP Open Web Application Security Project

POJO Plain Old Java Objects

R. Proxy Reverse Proxy

RAC Real Application Clusters

REST Representational State Transfer

RIA Rich Internet Applications

RMI Remote Method of Invocation

SAN Storage Area Network

SANS SysAdmin, Audit, Network, Security Institute

European Maritime Safety Agency System and Application Technical Landscape

5

sFTP Secure File Transfer Protocol

SMTP Simple Mail Transfer Protocol

SRM Site Recovery Manager

SOA Service Oriented Architecture

SSL Secure Socket Layer

TB Tera Bytes (i.e. 1012 bytes or 1 million mega bytes)
UDDI Universal Description Discovery and Integration

VLAN Virtual Local Area Network

VM Virtual Machine

WLI WebLogic Integrator

WLS WebLogic Server

XHTML Extensible Hypertext Markup Language

XWS WS Security implementation from Sun Microsystems

European Maritime Safety Agency System and Application Technical Landscape

6

1. Introduction and Objectives

This document describes EMSA System and Application landscape. Its main objective is to
document the technical solutions used by EMSA at System level and to provide directions on
options and preferable technologies to be considered at Application Level.

Although the System and Application Landscape described in this document are EMSA
guiding lines, this does not mean that no deviations are allowed.
Exceptions can be proposed and they will be considered on a case by case basis; if it is
found that is the best technical implementation for the requirement or there is no other way
of doing it, this exception will be accepted.
Also suggestions for innovation are welcome and if they bring added value to the landscape,
they will be included.

The document is organized in several chapters:

 Chapter 1: Introduction and Objectives.
 Chapter 2: Describes the System Landscape and the Technical solutions implements

at systems and network levels.
 Chapter 3: Describes the Application Landscape and preferable options to be used at

the Application level.
 Chapter 4: Describes the conceptual Service Oriented Architecture (SOA) to which

the applications should comply
 Chapter 5: Describes the LDAP structure to be used by all Maritime Applications
 Chapter 6: Describes the software versioning scheme
 Chapter 7: Presents a summary of the system and application landscape

European Maritime Safety Agency System and Application Technical Landscape

7

2. System Landscape

2.1. HIGH LEVEL NETWORK SCHEMA

EMSA Primary site
High level network schema

Figure 1 - Primary site. High level network schema

2.2. DATA LINKS

Data Links
• 2 Internet ISP

- active/active using BGP
- BGP autonomous system and routing fully managed by EMSA
- 100 Mbps each
- 256 Provided independent IP addresses

• 1 sTESTA link
- EU private network
- 2 Mbps

• 1 GEANT link
- Reserved to the CleanSeaNet project for high speed image transfer
- 1 Gbps

2.3. NETWORK SECURITY

Two layers of firewall protection:

 Checkpoint R75.40 2-nodes clusters;
 Cisco ASA;

European Maritime Safety Agency System and Application Technical Landscape

8

Reverse proxies for incoming connections (currently handling the following protocols: HTTP,
HTTPS and SFTP). The network is segmented using VLAN’s.

DMZs
•DMZ-1: reverse proxies, DNS servers, other services exposed to Internet
•DMZ-2: application servers and database servers (Front/Back End VLANs)

Monitoring of security events is currently achieved through a SIEM (Security Information
Event Management) system including Suricata, Splunk, F5 ASM module on top of EMSA F5
reverse proxy.

2.4. PROXY POLICY

The following rules should be followed:

 Accessing EMSA web applications should be always through HTTPS;
 Reverse proxies are used for all incoming connections from outside networks (Internet

and sTESTA);
 All incoming connections shall pass through our reverse proxies;
 All incoming SSL connections are terminated in the reverse proxies;
 Proxies are always responsible for the SSL encryption and decryption;
 Proxies are always responsible for creation of the SSL connections;
 1-way SSL is used for human to system interfaces while 2-way SSL should be used for

system to system interfaces;
 All SSL outgoing connections shall use the proxy. Any outgoing SSL connection shall be

initiated as plain HTTP by the applications to the proxy, where the SSL will be initiated
for the outgoing SSL connection. The protocol used to request the proxy the creation of
an outgoing HTTPS connection, involve the usage of an EMSA URL naming convention
(<standard_URL>.f5 URL’s) and some F5 configurations.

Figure 2: Proxy policy

Proxy Devices
• 2 x F5 Big IP v5000 Series

European Maritime Safety Agency System and Application Technical Landscape

9

2.5. NETWORK LOAD BALANCING

The F5 appliances form a redundant cluster that can perform load balancing for web
applications in any VLAN on EMSA network. The design of any new system or application
should preferably implement load balancing with node fail detection on this equipment.

2.6. HIGH LEVEL VIRTUAL INFRASTRUCTURE SCHEMA

2.7. VIRTUAL INFRASTRUCTURE SERVICES

The following services are offered to VMs and application environments:

 Basic monitoring with Nagios;
 Performance monitoring with vCenter Operations;
 VM-level backup with Networker or Netapp SnapMgr for Virtual Infrastructure.

Exceptionally also Networker agent-based backup can be implemented.
 Deployment of a VM or environment1;
 Cloning of a VM or environment;
 Snapshotting of a VM or environment2;
 Exporting as OVF a VM or environment;
 Hardware resource allocation changes3;

1 Subject to being included in the EMSA Template catalogue, currently including:
- Linux Red Hat Enterprise Server or CentOS in version 5 or version 6;
- As above, with WebLogic or with Oracle DBMS;
- Latest Microsoft Windows servers.

2 Subject to the following policy: the snapshot must be rolled back, or removed, in one week time to avoid
performance penalties;

Figure 3 - High Level infrastructure

European Maritime Safety Agency System and Application Technical Landscape

10

 Upgrade of VMware tools and virtual hardware;
 Troubleshooting.

2.8. APPLICATION REQUIREMENTS FOR VIRTUAL INFRASTRUCTURE

Applications and systems hosted in the EMSA Virtual Datacentre must respect the following
requirements:

 Base OS must be chosen out of the current EMSA template catalogue4;
 Compatibility with the latest VMware virtual hardware specifications (currently version

8);
 Hardware provisioning done according to a principle of fit-for-purpose;
 Compatibility with vMotion.

2.9. ENVIRONMENTS

EMSA has defined 6 possible different types of environments for the Maritime Applications.
The following picture presents an overview of them.

Figure 4: Types of Environments

The following figure shows detailed information related to each type of environment.

3 Subject to the following policy: CPU, Memory, disk and network for any VM should be fit for purpose, and
oversized VMs should be avoided to reduce contention issues and overhead. Granting more resources is subject to
a trend analysis of the use of current resources also looking at vCenter Operations performance indicators, and
takes into account its recommendation. VMs oversized are reported on a regular basis and are subject to
downsizing.
4 See note 1 on the previous page.

European Maritime Safety Agency System and Application Technical Landscape

11

Figure 5: Characteristics per Type of Environments

The basic infrastructure that supports the environments is as follows:

Environments
 Production
 Training: ideally 50% of the production capacity
 Pilot Production: ideally 50% of the production capacity
 Pre-Production: ideally 50% of the production capacity
 Test/Quality: ideally 25% of the production capacity

Server Infrastructure
• EMSA Datacenter is fully virtualised with VMWare technologies
• Those include:

- VMware ESXi VSphere 5
- VMware HA, DRS and Failover

High availability technologies
Service fail-over: Weblogic Active-Active, Oracle EXADATA, Oracle RAC
Server fail-over: VMware FailOver and VMware HA
Site fail-over: VMWare Site Recovery Manager;

Data replication: Asynchronous data replication via FCIP; backup storing off-
site

Service Clustering
• Weblogic Active/Active clustering
• Oracle EXADATA

SAN Storage
• Brocade fabric based on Sanswitch DS5300
• EMC Clariion CX4-240
• Netapp filer FAS3240 (only CIFS/NFSv3)

European Maritime Safety Agency System and Application Technical Landscape

12

Environment Test / Test Pilot Pre-Production Training Pilot Production Production
Purpose This

environment
allows software
contractors to
perform testing
and integration
of their
applications in
the EMSA
environment.

This
environment
offers a chance
for EMSA
application users
to review and
test applications
in development
or having past
SAT.

This
environment is
used to perform
training sessions
with the end-
users and MS
commissioning
tests.

This
environment is
used to
implement new
applications to
validate new
concepts before
implementing a
full-production
system.

Shall only be
provided for
applications
whose deliveries
have been
formally
accepted.

When an
application is no
longer in use,
the application
owner shall
inform unit A.3
of this change in
status.

Infrastructure
performance &
scaling

Equivalent to
25% of
production
capacity

Equivalent to
50% of
production
capacity

Equivalent to
50% of
production
capacity

Equivalent to
50% of
production
capacity

Responsibility
and installation

In test
environment the
contractor will
have the
necessary
privileges
(limited to areas
directly related
to the
development) in
order to be able
deploy the
application
under
development
without help
from A.3 staff.
On request A.3
may make
available staff to
support the
contractor.

The environment
shall also be
used to test
installation
procedures.
Before any
applications are
installed or
before
configuration
changes, data
fixes, etc are
performed, the
contractor will
deliver to EMSA
all source code,
installation
scripts,
installation
procedures,
release notes,
etc, as described
in the release
management
procedure. A.3
will be
responsible for
installation and
therefore the
contractor or
EMSA project
officer will need
to arrange with
A.3, sufficiently
beforehand, a
date for
installation.

In training
environment the
Operational
Units will have
the necessary
privileges
(limited to areas
directly related
to the
development) in
order to be able
deploy the
application
under
development
without help
from A.3 staff.
On request A.3
may make
available staff to
support the
contractor.

In Pilot
Production
environment the
Operational
Units will have
the necessary
privileges
(limited to areas
directly related
to the
development) in
order to be able
deploy the
application
under
development
without help
from A.3 staff.
On request A.3
may make
available staff to
support the
contractor.

All software or
scripts being run
in the
production
environment
shall first be
installed in pre-
production
environment.
Both EMSA
business
responsible and
EMSA IT
responsible shall
have formally
accepted the
software in
accordance with
Software
Release
Management
Procedure.

Installation and
maintenance will
be performed
solely by A.3 or
its contractors.

European Maritime Safety Agency System and Application Technical Landscape

13

2.10. DISASTER RECOVERY

EMSA’s Business Continuity Facility (BCF) is hosted in Porto in the premises of a commercial
hosting provider. The BCF is a fully equipped replica of the main site in terms of servers,
network equipment, internet connectivity, storage and middleware, and as such it may
function as either the main production site for an application, or as back-up site. This choice
may be made on a per application basis and depends on the EMSA needs, the application’s
replication design and capabilities, and the desired SL.

Any new system or application must conform by design to one of the business continuity
approaches foreseen so far:

1) ON/OFF model:
The servers and services that constitute the system or application are active and
visible on the network only in the main site. They are kept in sync in the secondary
site with some middleware or low level replica technology like Dataguard for
backends, or virtual machine cloning or storage array based replication for front
ends. But the replicated systems are always inactive on the secondary site in an off-
state and not visible on the network unless the recovery procedure is executed.
Taking over in that case means executing a procedure to stop the systems in the
main site (if possible), execute a last synchronisation (if possible), stop the
synchronisation flows, then restart the replicated systems in the secondary site
changing all the parameters that differ in the two sites like network configuration,
internal DNS entries, pointers to database or cartographic servers or to any other
horizontal service platform always available in both sites like LDAP, Single Sign On,
DNS etc…. Eventually, the external DNS entry should be changed to point external
Internet users to the public IP of the system or application in the new site.

According to this model, it is still possible to have the same internal FQDN for the
application servers in both sites, as servers are active and visible on the network
only in one site at a time, and when taking over, the A records of the internal DNS
can be changed to reflect the different IP address space in the new site.

2) ON/ON model:
The servers and services that constitute the system or application are active and
ready to take over at any time in both sites. Synchronisation rely on the features of
the application or middleware used rather than on a low-level cloning and
transferring of the virtual machines, offering either a fully multi-master active/active
approach like Active Directory, or some type of distributed geo-cluster, or anyway an
autonomous system which keeps data and configuration in sync between the two
legs in the two sites. Taking over in that case is a simpler procedure like activating
some built-in system or application feature to switch to the other site, possibly
requiring some internal and external DNS changes, or can be even fully transparent.

According to this model, different FQDNs and IPs for the application servers in the
two sites must be chosen, as servers are active and visible on the network in both
sites at any time.

Note: it is not accepted to design ON/ON systems where the virtual machines on the two
sides have the same internal DNS FQDN.

The ON/ON model, when supported by the application or middleware, might guarantee
faster and seamless fail-over procedure, hence it is the preferred approach.

The following figure exemplifies how the interconnection of current EMSA’s production
environment with the BCF is envisaged and also points to the use of several
replication/back-up systems at different levels of the infrastructure:

European Maritime Safety Agency System and Application Technical Landscape

14

Figure 6: EMSA DC connection with BCF

European Maritime Safety Agency System and Application Technical Landscape

15

The figure presented hereafter depicts the connection between the applications currently deployed at EMSA and the data replication to BCF
performed by Oracle database:

Figure 7: Business Continuity Facility

European Maritime Safety Agency System and Application Technical Landscape

16

Key elements of the actual BCF architecture are:

1) the two sites are connected through an IPSEC tunnel over an high performance link
2) the two sites use different private and public IP address ranges
3) the internal DNS zone emsa.local, containing server’s FQDN, is shared between the

two sites;
4) the external IP address space in each of the two sites is a different C-class of

Provider Independent IPs whose routing advertisements is managed directly by
EMSA routers

a. 91.231.216.0/24 => Primary site;
b. 91.231.217.0/24 => Secondary site;

5) the external DNS zone “emsa.europa.eu” is unique across the sites, it is delegated to
EMSA, and it is kept in sync between the two sites with master-slave DNS
replication;

6) data and systems are kept in sync through either:
a. Oracle Dataguard for backend;
b. Storage array replication for most of the front end virtual machines;
c. Ad hoc application built-in replication technologies, like active directory

replication, or Microsoft continuous cluster replication for Exchange and SQL.
d. Ad hoc scripts for data transfer.

7) Rerouting of Internet users to the BCF is done with DNS technologies

New applications development should always be BCF friendly by being compliant with the
following requirements:

 Bandwidth required for data and system alignment should be kept to a manageable
amount to allow continuous replication over a non-dedicated medium bandwidth link. A
bandwidth estimation for data synchronization between EMSA DC and BCF, through
Oracle Data Guard and other technologies, shall be provided;

 A fail-over procedure to BCF shall be provided together with one to fail back to EMSA;
 A list of all the application dependencies which need to be resolved in the BCF and main

production site for the application to run shall be provided:
o Web services
o Data sources
o Other application(s)
o Security constraints
o Infrastructural services
o Etc…

 Connections to other machines should always be configured by referring to the machine
name, never by referring to the IP address directly.

European Maritime Safety Agency System and Application Technical Landscape

17

3. Application Landscape

EI
S

Ti
er

Other Information
Systems

B
us

in
es

s
Ti

er
W

eb
Ti

er
C

lie
nt

Ti
er

Message Oriented
Middleware

Oracle 12c

Database

Se
cu

rit
y

OS Server Platform - LINUX RedHat

Application Server

Web Container

Provided by JEE Server, or Tomcat

Java Server Pages, Java Server Faces , Servlets, Portlets
Web

Services

WebLogic Application Server (12.1.2), JBoss

EJB Container,
Provided by JEE Server

Session Beans, Message-Driven Beans

Entity Beans (CMP, BMP) Hibernate, iBatis, POJO

POJO

JDBC JCA JMS

Standard Classes

Hibernate, iBatis, POJO

POJO

OS Desktop Client System Platform – Windows, Linux

(X)HTML
+JavaScript

[SVG]
[RSS]

Web Browser Environment

IE (11), Firefox (45)

HTTP
HTTPS

Web Services
RMI

Client Application

Web Services

External Systems

S

C

W

B

E
Authentication and

Authorization

openLDAP
DB Custom schema

Ph
ys

ic
al

an
d

N
et

w
or

k
Se

cu
rit

y

Lo
gi

ca
lS

ec
ur

ity

X

Lo
g4

j

M
V

C

ESB

Oracle Service Bus 11g

JMS

Figure 8: Application landscape

3.1. ARCHITECTURE OVERVIEW

EMSA IT systems should follow state of the art JAVA PLATFORM, ENTERPRISE EDITION
VERSION 7 n-tier architecture. Figure 8 represents the preferable EMSA IT architecture
where the major tiers are:

Client Environment
Client Tier:
Client Tier is a JEE application front-end that provides communication with
human users or with others external systems.

For details, refer to chapter3.2

Server Environment
Web Tier:
Web Tier connects user interface on a Client Tier with business logic on a
Business Tier.

For details, refer to chapter 3.3.1, (a)
Business Tier:
Business Tier provides transaction processing logic (business logic) and data
processing logic (data management). Business processes and business
components should not be implemented outside this tier.

For details, refer to chapter 3.3.1, (b)
EIS Tier:
EIS (Enterprise Information System) Tier consists of all enterprise
information systems, such as databases or other information systems.
ESB and Message Oriented Middleware are also included in this tier.

European Maritime Safety Agency System and Application Technical Landscape

18

For details, refer to chapter 3.3.2

Client Tier is the only tier of the Client Environment and it’s by definition a distributed and
separated tier.

Web Tier, Business Tier and EIS Tier are part of the Server Environment hosted at EMSA;
EIS Tier (and its components) is usually a separated tier implemented on top of a separated
server environment and depending on the complexity, the system architect may decide
between a complete distributed architecture where all tiers are distributed in separated
server environments or a mixed architecture where some tiers may share one server
environment.

Operation systems options for the different environments are:

Client Environment
• Windows 7
• LINUX distribution (RedHat, Suse, Ubuntu or Fedora) desktop

Server Environment
• LINUX Redhat server 7 (64 bits)
• Windows Server 2008

3.2. CLIENT ENVIRONMENT AND CLIENT TIER

3.2.1.Web Browser Environment
The majority of EMSA applications are delivered to the final user via a browser based
interface. A Web UI's advantage is that no additional software needs to be installed on client
side and minimal demands are placed on the client platform.

Because a HTML Thin Client GUI is limited by markup language / JavaScript capabilities,
others resources can add to build Rich Clients providing better user experience through the
Web Browser. Applications must be 100% compatible with, at least, the following browsers
or higher versions:

Web Browsers
• Microsoft Internet Explorer 11 and later
• Mozilla Firefox 45 and later

HTML page serves as a host for Rich Clients built with different technologies:

Client Tier Technologies
• HTML 5
• Javascript
• Tag Libraries
• AdobeAir (to be allowed only on case by case basis)
• WebGL

Preferred JavaScript Libraries
• Ext JS
• jQuery

Technologies used to implement Rich Internet Applications in the Client Tier can also have
strong relationships with the technologies used in the Web Tier (e.g. Tag Libraries)
described in chapter 3.3.1.

Usage of Java Applets should be limited to very particular situations and the decision to
allow this will be taken on a case by case basis.

European Maritime Safety Agency System and Application Technical Landscape

19

3.2.2.Client Application
Due to some business requirements (e.g. operation in disconnected mode, access to the
local file system, …), some applications may require a Fat Client.

In order to create a unified technology platform, and to support all operating platforms in
use at EMSA or EMSA clients, preference will be for using the Java language. As an
alternative, EMSA may allow use of Adobe AIR technology.

A mechanism for deploying and updating the client application at the remote PC will be
needed (Java Webstart will be preferred). Dependencies on runtime components not already
part of standard EMSA PC configurations will be regarded as negative.

Because EMSA needs to support other organisations within the Member States, any
application to be installed on a client will need to be cross-platform, covering at least the
platforms listed earlier in this document5.
Usually, a client application will need also to connect to the server side of the system in
order to perform business actions (e.g. data synchronization). Several technologies can be
used to address this client-server connection:

Client-Server connection technologies
• HTTP or HTTPS
• Web Services
• OGC WMS, WFS and KML
• JSON
• SOAP, with WS-*

Communications to servers shall be done using web services, exceptions may be granted on
request. Exposed Web Services shall always be protected with Authentication and
Authorization. Important business data should always be stored on servers managed by
A.3, if this requirement cannot be met (due to business requirements, impossibility to
connect, …) a procedure for providing data back-ups needs to be foreseen.

In case development of a fat client is proposed, this needs to be discussed with A.3 and
agreements on installation requirements, connection technology and data back-up need to
be reached before starting development.

Mobile application platforms
• iOS 7 and up
• Android 4.0 and later

Increasingly mobile devices are used for accessing web based information systems. Where
possible, in order to avoid creating multiple platform dependent solutions, such
developments should be based on simple website access, with appropriate changes applied
to the UI to take into account the smaller screen size, reduced bandwidth and touch based
controls used by mobile devices. In cases where business requirements cannot be reached
using a mobile optimised website, at least the application platforms and version mentioned
above need to be supported.

3.2.3.External Systems
External systems will also act as clients to EMSA systems creating the need of integrating
different software systems used by different organizations (business partners). The system
integration helps to automate collaboration processes and improve business performance.
De-facto standard technologies should be used to inter-connect external systems with EMSA
systems:

5 If the application is to be used only by EMSA this requirement can be reduced to
supporting Windows 7. An application installer compatible with EMSA’s MS System Center
needs to be provided.

European Maritime Safety Agency System and Application Technical Landscape

20

External systems integration technologies
• Web Services
• OGC WMS, WFS and KML – should follow INSPIRE Directive 2007/2/E
• SOAP, with WS-*

• sFTP /FTP

WS-* standards will be the preferred way for securing, and enabling QoS, reliability, etc. for
these web services.

3.3. APPLICATION ENVIRONMENT

3.3.1.Application Server
EMSA architecture is based on the standard JEE version 5. The following Application Servers
should be used as the base Web and EJB containers:

Application Servers
• Weblogic Application Server (latest version)
• JBoss (latest version)

New development or ‘significant’6 changes to existing applications should always target the
latest version of the application server in use at EMSA. For existing applications, EMSA will
assess the desirability vs the risks of upgrading the underlying application server on a case
by case basis.

Simple applications, where distribution is not foreseen, the EJB container is not needed; see
below for details.

(a) Web Tier
The delivery of Rich GUI based on Web Browsers is achieved by a set of components located
in this tier and in close relationship with the Client Tier. Those components may vary
depending on the technical solution adopted and level of complexity required for the Rich
GUI; major technologies are presented in the next table:

Web Tier Technologies
• JSP – Java Server Pages
• JSF – Java Server Faces
• Portlets
• Rich server side components7

Portal technology
• Liferay Enterprise Edition

Simple applications, that only require a Web Container can use:

Web Container
• Tomcat (latest stable version)

Web Services are used to provide communication between loosely connected system
components and are the preferable mechanism to expose services to external
systems/applications. Several technologies could be adopted:

Web Services technologies
• AXIS 2
• Spring Web Services

6 Significant shall be understood as any change resulting in a change of either major or
minor versioning number (see further for a description of the version numbering scheme in
use at EMSA)
7 No preferable solution yet. On a case by case, other technologies that enable Rich Web
base clients can be used

European Maritime Safety Agency System and Application Technical Landscape

21

• UDDI
• XWS

Where needed the WS-* family of web service specifications as defined by OASIS will be
preferred for implementing web service reliability, security, etc.

(b) Business Tier
System functionalities are always implemented in the Business Tier and several technical
options can be used to implement the Business components.
A software layer approach must be followed, implementing at least, two layers:

Business Layer: Responsible for the delivery of the business functionalities and
orchestration of the business processes

Data Access Layer: Responsible for isolation of data access and actions executed over the
persistent data storage (typically a relational database). Usually, Data Access Object (DAO)
design pattern is mapped into this layer.

To support data transfer between layers and even between tiers a complete set of objects
according to the Data Transfer Objects design pattern must be implemented.

For simple applications where an EJB container is not required:

Business Layer technologies
• POJO (Plain Old Java Objects)

Data Access Layer technologies
• JPA
• JDBC
• Hibernate
• springJDBC

For systems requiring an EJB container (that will be provided by the selected Application
Server):

Business Layer technologies
• Session EJBs
• Message Driven EJBs
• POJO (Plain Old Java Objects)

Data Access Layer technologies
• Hibernate
• springJDBC
• Entity EJBs

3.3.2.EIS Tier
(a) Database
EMSA stores data in relational databases.

Relational Database Management System
• ORACLE 12c

New development or significant upgrades should enable the application to use the latest
RDBMS version in use at EMSA.

(b) Message Oriented Middleware
To provide messaging services for integrated systems or asynchronous operations, EMSA
relies on a Message-Oriented Middleware that increases the interoperability, portability, and
flexibility by isolating the exposed services from the internal implementation and allowing
distribution over multiple platforms (among other advantages).

European Maritime Safety Agency System and Application Technical Landscape

22

Asynchronous messaging is the preferred method for exchanging data between internal
applications. JMS will be the preferred manner for consuming and producing messages. The
use of asynchronous message should enable better decoupling between applications
(compared to web services), allow a more up-to-date system state (compared to batch
processing), increased scalability (due to MOM underpinnings) and improved configurability
and oversight of the system integrations (through use of the ESB). Asynchronous
messaging over JMS will also be the preferred method for request/reply messaging
paradigm.

Message Oriented Middleware
• WebLogic JMS

(c) Other Information Systems
Any other Information Systems inside EMSA is considered to be in the EIS tier.
Integration can be done using several techniques; preferable methods of integration are:

Internal systems integration technologies
• JCA – JAVA EE Connector Architecture
• Web Services (like an external system in the Client Tier)), those can be
based on either SOAP, REST or JSON

For services that are to be consumed by other systems inside of EMSA or to the outside the
more formally defined SOAP web services are preferred. Asynchronous communication
(based on call backs) should be used where possible.

Compared to the JMS based integration described above, more effort will be required to
ensure the consumers / producers deal with service unavailability, scalability or reliability
issues, therefore integration using asynchronous JMS is encouraged.

(d) Authentication and Authorization
EMSA applications that require user authentication and authorization should rely on a
directory to store user credentials, roles and access privileges.

User directory technologies
• openLDAP

Although the use of a database schema to cope with these functions is a common practice,
it has several disadvantages and should be avoided.

EMSA owns a centralized system for Identity Management that encompasses two different
aspects: SSO for authentication and central user management based on Oracle technology.
For new applications development, developers should focus on:

 Relying on SSO for authentication
 Using JAAS for in-app authorization
 Weblogic App Server needs to be configured accordingly (JAAS + OAM agent)
 Use an RBAC model
 All administration of security principals will be handled through the Oracle Identity

Manager.

The following figure gives an overview of the current Identity Management implementation.

European Maritime Safety Agency System and Application Technical Landscape

23

Figure 9: Identity Management high level diagram

Figure 10: Identity Management Logical Overview

European Maritime Safety Agency System and Application Technical Landscape

24

3.4. SECURITY

The implementation of EMSA applications shall follow and be compliant with the best
practices for secure programming. The following recommendations and standards are
mandatory and must be taken into consideration:

 SANS Institute recommendations for JAVA/JAVA EE Secure Software Programming
(see Annex 1 or http://www.sans-ssi.org/blueprint_files/java_blueprint.pdf);

 OWASP Application Security Verification Standards (with minimum application
security of “2A”) (http://www.owasp.org/index.php/ASVS);

All applications shall be assessed against those recommendations and standards.

3.5. REPORTING PLATFORM

Reporting Platform
• JasperReports
• Jasper BI

3.6. GEOGRAPHIC INFORMATION SYSTEM

GIS Platform
• ESRI Arc GIS
• Jeppesen C-Map Professional +
• GeoServer

Where applicable, the OpenGIS WMS (v1.3.0) and OpenGIS WFS (v1.1.0) standards shall
be used for exchanging geographical data between applications. Additionally, OpenGIS KML
(v2.2) may be used. These standards should follow the INSPIRE Directive 2007/2/E when
possible.

3.6.1.Electronic Nautical Charts

EMSA distributes Electronica Nautical Charts to EMSA Maritime Applications, using OGC
WMS standard. The ENC system is based on a 2 tier system:

- Application/distribution tier: Geoserver
- ENC database tier: IIS and Jeppesen C-Map Professional +

This system is redundant using a load-balancing approach implemented in the F5.

3.7. LOGGING

Log4J shall be the preferred library for generating application logs. All application logs
should use the same log message format, as described below:

<param name="ConversionPattern" value="%d{yyyy-MM-dd/HH:mm:ss.SSS/zzz} %-5p
[%-t] [%l] %x - %m%n" />

Mandatory fields and format:

 %d – date in the specified format
 %-5p - Priority of the logging event.
 %m - application supplied message associated with the logging event.
 %-t - name of the thread that generated the logging event.
 %l - location information of the caller which generated the logging event.
 %x - NDC (nested diagnostic context) associated with the thread that generated the

logging event.

European Maritime Safety Agency System and Application Technical Landscape

25

The following conversion patterns should be avoided as much as possible for Production
environments, due to increased processing needs:

 C
 F
 1, L
 M

The logging level should be changeable without requiring a restart of either the application
or the application server. As for all configuration files, the log configuration file must reside
outside of the packaged application.

Definition and implementation of log rotation and clean-up rules/processes is mandatory for
every single logfile generated by the systems and its components.

3.8. STORING TIMES AND DATES

All EMSA servers, regardless of their function, shall use NTP to maintain accurate and
aligned system clocks.

In order to prevent mismatches between data stored in different applications, all data shall
in all cases be stored in Coordinated Universal Time (UTC). It is important to note that UTC,
as opposed to local time, does not change with a change of seasons.

When a time is displayed to a user, used for triggering workflows or generating reports, it
shall be the responsibility of the application to convert, if so desired, the stored UTC time to
local time for the user. The final decision on if, or how the conversion shall happen, depends
on the business requirements and will be an application decision. It is recommended for the
user to be informed whether UTC time, user local time or source local time is displayed.

3.9. OTHERS

The following points are generic mandatory requirements that shall be respected:
 Root or rooted administration accounts shall not be used.
 All system components shall be used by the same OS user.
 Software distribution cannot be done using rpm or any other solution that requires

root privileges.
 In case it is necessary to have authentication on middleware components (e.g.

application server, JMS) a dedicated user must be used. This user cannot be
administration user of the components.

 When using non-compiled languages (e.g. php, perl) the versions of these languages
shall be aligned with the version distributed bundled in OS version

 Configuration files shall not include passwords in clear text. Solution to cope with this
requirement may vary and must be agreed with EMSA.

If any deviation is foreseen, it shall be detailed and justified. EMSA has the last word in the
decision process.

European Maritime Safety Agency System and Application Technical Landscape

26

4. Service Oriented Architecture

EMSA applications should be compliant with the Enterprise Service Oriented Architecture
with the objective of providing business and data services to others applications and being
flexible and agile in order to easily adapt to change in short time.

EMSA Service Oriented Architecture is supported by a state of the art Service Oriented
Infrastructure that follows the architectural best practices of the SOA metamodel.

Figure 11: SOA architecture

The two major components supporting EMSA Service Oriented Architecture are:

EMSA SOA key components
• Liferay Portal, version 6.2 Enterprise Edition8

• Oracle SOA Suite 11g (includes OSB 11.1)

The fundamental building block of Service Oriented Architecture is a service. A service is a
component that can be interacted with through well-defined interfaces or message
exchanges. Services must be designed to perform simple, granular functions with limited
knowledge of how messages are passed to or retrieved from and for flexibility, agility,
availability and stability.

EMSA principles of service orientation, which must be followed while designing services,
are:

8 Liferay 6.2: Weblogic 12c and JDK 1.7

European Maritime Safety Agency System and Application Technical Landscape

27

1. Services are loosely coupled components
2. Services are independent components
3. Services are self-contained
4. Services boundaries are explicit
5. Services are autonomous
6. Services share schema and contract
7. Services are independent deployable (logical aggregation can be considered)

Services designed based on these principles are much more likely to be reused within EMSA
growing SOA infrastructure.

4.1. SERVICE CONSUMERS

Service consumers or composite applications are the applications that are developed to
handle business actions or events initiated by business initiators. Business event initiators
are entities that initiate business actions or events (either human users or other systems).

4.2. SHARED SERVICE INFRASTRUCTURE

Shared service infrastructure defines the framework to shared services. It is based on
Validate, Enrich, Transform, Route, and Operate or invokes (VETRO) patterns

Shared services are shared and reusable services that are used in service orchestration
while creating business processes. Examples of shared services types are:

 Presentation services that present the data to the user.
 Business services that represent core business capabilities. Business services can

range from relatively simple to very complex cross-functional, inter-enterprise
business process.

 Data services that are entity services which provide access to enterprise data.
Simple data services have a Validate, Create, Retrieve, Update, and Delete (CRUD)
interface but more complex data services could be responsible for data aggregation
or data synchronization.

European Maritime Safety Agency System and Application Technical Landscape

28

5. LDAP Structure for Maritime Applications

5.1. LDAP STRUCTURE

The following figure provides an overview of the LDAP structure to be used for the different
Maritime applications:

Dc=emsa,dc=europa,dc=eu

Ou=Users
organizationalUnit

Ou=groups
organizationalUnit

Ou=People
organizationalUnit

Ou=System
organizationalUnit

Uid=John Uid=Roger Uid=sys1 Uid=sys2

Ou=App1
organizationalUnit

Ou=App2
organizationalUnit

Cn=Role1
groupOfNames

Cn=Role2
groupOfNames

Cn=Members
groupOfName

Figure 12 - LDAP structure overview

In this first implementation stage, this LDAP shall provide authentication services for users
and systems and one first level of information to authorization services.

Domain Component
DC=emsa,DC=europa,DC=eu

OU=Users This Organizational Unit will contain all the users
registered to access any of the Maritime Applications.
See also chapter “Authentication service”

OU=People Human users will belong to this Organization Unit
OU=System Systems (non-human users) will belong to this

Organization Unit
OU=Groups Information and groups stored below this OU will

provide the first level of information to authorization
services.
See also chapter “Authorization service”

OU=App1 Organizational Unit for Maritime Application (or system)
called App1.
All users and systems with granted access to App1 are
under this group.

OU=App2 Organizational Unit for Maritime Application (or system)
called App2.
All users and systems with granted access to App2 are
under this group.

Table 1 - LDAP main elements

5.2. AUTHENTICATION SERVICE

Registered users are stored under OU=Users. A separation is made between Human Users
and System Users:

 Human Users are registered under OU=People, OU=Users
 System Users are registered under OU=System, OU=Users

European Maritime Safety Agency System and Application Technical Landscape

29

5.3. AUTHORIZATION SERVICES

Each Maritime Applications that must have its correspondent organizational unit under
OU=Groups. Registered Users that have privileges to access a specific application must be
member of that application to have access authorization granted.
Two different scenarios can be implemented:

1. Applications that requires only a global authorization
It is enough to know that access to the application has been granted to the user. In
this scenario, it is suggested to create a group of name called “members” under the
application organizational unit. All users authorized are members of this
“GroupOfNames”

2. Applications that requires roles/groups authorization
There is the need to know that access to the application has been granted to the
user and, in addition, what role/group does the user belong.
In this scenario, it is suggested to create several groups of names, one for each
role/group under the application organizational unit. Users are members of one or
more “GroupOfName”

European Maritime Safety Agency System and Application Technical Landscape

30

6. Software Versioning Scheme

All applications being developed for or by EMSA shall use the following versioning scheme:

 [major].[minor].[revision]<.internal number>

Follows a description of the fields:

 Major will start 0 and will be increased by 1 every time significant new functionality
is added to the application, or when significant changes to the implementation
and/or organisation of the code have happened, such as:

o When delivery of a new application or a major new version has been
accepted, the major number will be increased by 1, other version numbers
will be reset to 0;

o Development of the next major version starts by increasing major version
number by 1 and resetting all other version numbers to 0;

o The above rules mean that all even numbered versions (+0) will be
development releases for major new versions, whilst all odd numbered
versions will be stable, production releases. E.g. if a software with version
number 0.2.65 has been accepted for use in production environment, its
version number will be 1.0.0. Development for the next major release will
start at 2.0.0 and the production accepted release of this will carry a 3.0.0
version;

 Minor will be increased by 1 whenever less important new functionality or user
interface changes are introduced;

 Revision will be increased by 1 whenever a new application version containing only
bug fixes is delivered for deployment in EMSA pre-production environment;

 The internal number is an optional element that may be used by the contractor.

European Maritime Safety Agency System and Application Technical Landscape

31

7. Summary

Area Description Technology SW Version Comment
Application
Server

Oracle WebLogic 12.1.2
12.2

Active / Active Weblogic
clustering is foreseen for
critical applications

Tomcat 6

Backup SW VMware VM
backup;
Legato Networker

7.6 SP3

HW HP MSL8096 and
Dell PVT Tape
Libraries

N/A

Business
Continuity

HW/SW systems to
guarantee different
degrees of service
availability

Local scale:
VMware HA and
FailOver

Geographial scale:
Asynchronous
data replication
through the
Storage Array;
VMWare Site
Recovery
Manager;

ESXi V 5

Clustering Service fail-over Front-end:
Weblogic
Active/Active
Back-end: Oracle
EXADATA

12c

12c

Database Oracle EXADATA 12c

Data Links Internet connectivity 2 Internet circuits
Internet IP
connections

N/A Each link: 100 Mbps, 256
Provided independent IP
addresses

GIS ESRI ArcGIS 10 Upgrade to a newer planned
until the end of 2014

HW Servers VM hardware VMware Hardware
revision 8
(vSphere 5)

Only production database is
not virtualised and runs on
blades as well.

VM Host hardware HP Blade and DL
series servers

N/A

ESB and SOA
suite

Business processes
integration

Oracle SOA suite 11g

Monitoring
System

Nagios N/A

Network
Security

Security DMZ Checkpoint blades R75.40 2 node clustered configuration
with Mobile Access VPN

Operating
Systems

Linux and MS
Windows

RedHat
Enterprise
Linux 5/6
Windows
Server 2008

Proxy Security DMZ F5 Big IP v5000
series proxies

11.4.0 Clustered configuration with 2
nodes

Reporting
Platform

Business Objects Enterprise XI
R2

2 CPU Unlimited users

Jasper Reports
Jasper BI

6.2

SAN Storage Storage Area
Network

Brocade Fabric;
EMC Clariion
Model CX4-240;

European Maritime Safety Agency System and Application Technical Landscape

32

Netapp FAS3240

Virtualisation VMWare vSphere 5

Electronica
Nautical Charts

Geoserver,
IIS,
Jeppesen C-Map
Professional +

2.2

V360

For redundancy purposes: 2
nodes load-balanced in the F5

European Maritime Safety Agency System and Application Technical Landscape

33

Annex 1

GSSP (GIAC Secure Software Programmer)
Java/Java EE Implementation Issues

www.sans.org

Task 1: Input Handling - Java programmers must be able to write programs that read input from their interfaces
and properly validate and process these inputs including command line arguments, environment variables, and input
streams. As these sources may ultimately derive from user input or other untrusted sources, Input Handling has
security repercussions.
01.1.1 Input Validation Principles - Java programmers must understand that input cannot be trusted, regardless of
the interface, i.e., HTTP Requests, Applet sockets, serialized streams, configuration files, backend datastores, etc.
Java programmers must understand the white-list approaches and black-list approaches and the tradeoffs between
them.
01.1.2 Input Validation Sources - Java programmers must recognize common sources of input to Java
applications. This enables them to know when to question the trust level of certain data and weigh it to decide if
input validation is warranted.
01.1.3 Input Validation Techniques - Java programmers must understand how to validate common data types
such as String data as well as uncommon input structures. Familiarity with Regular Expressions, doValidate() and
other tools of Java and J2EE to perform input validation are required.

Task 2: Authentication & Session Management - Java application programmers must have a basic
understanding of Java and J2EE authentication APIs as well as a mastery of authentication principles for
local and remote applications. For the purposes of this examination, Session Management is considered the
process of maintaining an end-user’s authenticated identity for an extended period. It is required that Java
programmers understand the threats to common authentication and session management operations in order
to properly protect these operations.
01.2.1 When to Authenticate - Java programmers must understand that authentication is needed not only for end-
users, but also 3rd party services, backend systems, etc.
01.2.2 Authentication Protection - Java programmers are required to know how to use encryption and certificates
to protect various authentication processes. This includes an understanding of strength-of-function, credential
expiration, credential recovery/reset, and re-authentication.
01.2.3 Session Protection. For the protection of session tokens, Java programmers are required to understand the
implications of several topics, including encryption, strength-of-function, lifespan of tokens, and re-issuance.
01.2.4 Rule 4: Authentication Techniques - Java programmers must be familiar with the more common
authentication techniques and APIs available within Java and J2EE technologies. This includes the Java
Authentication and Authorization Services (JAAS), backend credential storage, and various front-end authentication
alternatives such as certificate, forms, and basic authentication. This familiarity assumes the programmer will
understand the threats and tradeoffs for each technique.
01.2.5 Authentication Responsibilities - Java programmers must have a complete understanding of what services
and protections are provided by using common APIs and what is not provided. For example, maximum session
length, re-authentication, and encryption are protections that are not enabled automatically.

Task 3: Access Control (Authorization) - Java application programmers must be able develop applications
that guarantee the confidentiality of user data. These applications must also prevent users from performing
certain functions. Developers must understand that access control must actively be enforced, not ignored or
left to backend systems.
01.3.1 Restricting Access to Resources - Java developers must under-stand the need for a clear and complete
access control policy for system resources: for example, user data objects that should only be accessed by the owner
of the data.
01.3.2 Restricting Access to Functions - Java developers must understand the need to restrict access to functions
such as privileged functions and privileged URIs, etc.
01.3.3 Declarative Access Control - An understanding of the common APIs (and their tradeoffs) that supports
access control according to configuration files.
01.3.4 Programmatic Access Control - Java developers must understand how and when to manually perform
access control checks in their custom code.
01.3.5 JAAS - Java developers must understand how the Java Authentication and Authorization Service can be
used to implement access control.

European Maritime Safety Agency System and Application Technical Landscape

34

Task 4: Java Types & JVM Management - Java programmers must understand the security implications of
built-in data types and Java-specific memory management.
01.4.1 java.lang.String - Java programmers must have a complete mastery of the String class’s immutability and
how to compare String objects.
01.4.2 Integer and Double Overflows - Java programmers must understand the limitations of Java’s numerical
data types and the resulting security implications.
01.4.3 Garbage Collector - Java programmers must have an understanding of how the Java Garbage Collector
works and the resulting security implications.
01.4.4 ArrayList vs Vector - Java programmers must understand the differences and the resulting security
considerations between the ArrayList and the Vector.
01.4.5 Class Security - Java programmers should be familiar with accessibility modifiers, the final modifier, class

comparisons, serialization, clone-ability, and inner classes.
01.4.6 Code Privileges - Java Programmers must understand how to manage the privileges of code as well as the
different protection domains. This includes an understanding of the Security Manager and its policy file.

Task 5: Application Faults & Logging - All Java application programmers need to be able to properly handle
application faults.
01.5.1 Exception Handling - Java application developers must understand Java’s try/catch/finally construct to
appropriately handle application and system exceptions. Developers must determine how much information should
be logged when an exception is encountered depending on the nature of the exception.
01.5.2 Logging - Developers must understand the principles behind logging security-relevant events such as login,
logoff, credential changes, etc. Developers should also be familiar with Java’s logging package, java.util.logging.
01.5.3 Configuration of Error Handling - J2EE developers should be familiar with the configuration to return a
default error page for HTTP 404 and 500 errors.

Task 6: Encryption Services - Java programmers must understand when and how to use encryption to
protect sensitive data.
01.6.1 Communications Encryption - Java application developers must be familiar with the Java Secure Sockets
Extension (JSSE) packages as well as how to configure SSL communication for J2EE applications. Developers are
also responsible for knowing which of their application’s external links should be protected with encryption.
01.6.2 Encryption of Data at Rest - Java developers must understand how to store sensitive data in encrypted
format.

Task 7: Concurrency and Threading - Java programmers must understand how to properly structure multi-
threaded programs.
01.7.1 Race Conditions - All Java application developers must understand race conditions and how they affect
system security. This includes avoiding caching security relevant information that can be accessed by multiple
threads.
01.7.2 Singletons & Shared Resources - Java developers must understand how to implement the Singleton pattern
in Java and how to protect other resources that are accessed by multiple threads.

Task 8: Connection Patterns - Java programs must be able to securely interface with other applications.
Developers must be familiar with parameterized queries, output encoding, and fail-safe connection patterns.
01.8.1 Parameterized Queries / PreparedStatements - Java programmers must understand the security risks
introduced by using dynamic queries and how to safely use the PreparedStatement to safely and securely interact
with databases based on user-supplied input.
01.8.2 Output Encoding - Java programmers must understand when and how to use output encoding to display data
to user interfaces, as this is a primary mitigation technique to UI injection attacks, e.g. Cross-site Scripting.
01.8.3 Fail-safe Connection Patterns - Java programmers must properly form connection patterns using Java’s
try/catch/finally to prevent resource leaks. Resource leaks can occur as a result of failures while operating with
connections to external systems.

Task 9: Miscellaneous
01.9.1 Class/Package/Method Access Modifiers - All Java programmers must understand how the Java access
modifiers (public, private, protected) can be used to protect class members and methods.
01.9.2 Class File Protection - Java programmers must understand how JAR sealing is used.
01.9.3 J2EE Filters - J2EE programmers must be familiar with J2EE Filters and how they can be used to implement
many of the tasks listed above.

