Annex 1 - Assessment of Sampling Error

Quantification of the sampling error is based on the continuity-corrected version of the Clopper-Pearson confidence interval ${ }^{1}$ on the binomial proportion, [39]. This confidence interval is referred to as a sampling error, and details of its implementation are outlined below.

The probability $C=(1-\alpha)$ for occurrence of proportion $\hat{p}=\frac{x}{n}$ (occurrence of x instances of interest in n number of trials) can be assigned based on an inverse of the regularised incomplete Beta function given by (1).
$I_{\beta}(a, b, x)=\frac{\int_{0}^{x} t^{a-1} \cdot(1-t)^{b-1} \cdot d t}{\int_{0}^{1} t^{a-1} \cdot(1-t)^{b-1} \cdot d t}$
Namely, given the desired probability C, an interval that contains the "true" binomial proportion \hat{p} can be found as $\left\{\hat{p}_{l o} ; \hat{p}_{u p}\right\}$, where $\hat{p}_{l o}=\frac{x_{l o}}{n}$ and $\hat{p}_{u p}=\frac{x_{u p}}{n}$, and where the number of occurrences $x_{l o}$ and $x_{u p}$ derive from the inverse solutions to equations (2) and (3), respectively:

$$
I_{\beta}\left(n-x_{l o}+\frac{1}{2}, \quad x_{l o}+\frac{1}{2} ; \quad 1-\hat{p}\right)=\frac{\alpha}{2}
$$

$$
\begin{equation*}
I_{\beta}\left(n-x_{u p}+\frac{1}{2}, \quad x_{u p}+\frac{1}{2} ; \quad 1-\hat{p}\right)=1-\frac{\alpha}{2} \tag{3}
\end{equation*}
$$

The solutions can be denoted as $x=I_{\beta}^{-1}$.
In case of cumulative probability function for random variable X, the above proportions refer to the maximum number of occurrences of random variable X up to the specific value x.

[^0]Glasgow

Figure 1 - Example of probability distribution for the population of random variable \mathbf{X}, where $\mathbf{X \sim N} \mathbf{(0 , 1)}$

Figure 2 - Continuity-corrected Clopper-Pearson 99\% confidence interval (sampling error) on binomial proportion for $\mathbf{n}=\mathbf{3 0}, \mathbf{n}=100$ and $\mathbf{n}=500$

$$
\mathrm{n}=30, \mathrm{C}=0.99
$$

Figure 3-99\% sampling error on the cdf for the population of random variable X; sample size $\mathbf{n}=\mathbf{3 0}$
n=30

Figure 4 - Example of probability distribution for a randomly generated sample of variable X; sample size $\mathbf{n}=30$

$$
\mathrm{n}=30, \mathrm{C}=0.99
$$

Figure 5 - Assigned cdf on the basis of the sample of 30 will be contained within the 0.5% quintiles around the cdf

$$
\mathrm{n}=30, \mathrm{C}=0.99
$$

Figure 6 - Distribution of probability density for the binomial proportion

$$
\frac{I_{\beta}^{-1}(x, \hat{p}=0.15)}{n} \text {, Monte-Carlo sampling }
$$

$$
\mathrm{n}=30, \mathrm{C}=0.99
$$

Figure 7 - Distribution of probability density for the binomial proportion

$$
\frac{I_{\beta}^{-1}(x, \hat{p}=0.5)}{n} \text {, Monte-Carlo sampling }
$$

$$
\mathrm{n}=30, \mathrm{C}=0.99
$$

Figure 8 - Distribution of probability density for the binomial proportion

$$
\frac{I_{\beta}^{-1}(x, \hat{p}=0.85)}{n} \text {, Monte-Carlo sampling }
$$

$\mathbf{n}=\mathbf{3 0}, \mathbf{C}=\mathbf{0 . 9 9}, \mathbf{1 0 0 , 0 0 0}$ Monte Carlo (MC) trials

Figure 9 - $\mathrm{n}=30$, $\mathrm{c}=0.99$, 100000, Monte Carlo trials

A Monte-Carlo experiment confirms that only in about 1,000 occasions out of 100,000 samples of 30 elements drawn randomly from population $N(0,1)$, would the cdf for any of the samples be beyond the 0.5% quintiles off any value of the cdf for the population. Sample size $n=30$.

$$
\mathrm{n}=30, \mathrm{C}=0.99
$$

Figure 10 - Sampling error, $n=30, c=0.99$

Figure 10 shows that since the cdf of a population is never known, the sampling error allows deriving the interval around the sample cdf within which the population cdf can be expected with C probability; sample size $n=30$.

$$
\mathrm{n}=100, \mathrm{C}=0.99
$$

Figure 11 - 99\% sampling error on the cdf for the population of random variable \mathbf{X}; sample size $\mathbf{n}=\mathbf{1 0 0}$

Figure 12 - Example of probability distribution for a randomly generated sample of variable X; sample size $\mathbf{n}=100$

$$
\mathrm{n}=100, \mathrm{C}=0.99
$$

Figure 13 - Assigned cdf on the basis of the sample of 100 will be contained within the 0.5% quintiles around the cdf

$\mathrm{n}=100, \mathrm{C}=\mathbf{0 . 9 9}, \mathbf{1 0 0 , 0 0 0}$ Monte Carlo (MC) trials

Figure 14 - $\mathrm{n}=100, \mathrm{c}=\mathbf{0 . 9 9}$, 100000, Monte Carlo trials

Figure 14 shows that a Monte-Carlo experiment confirms that only in about 1,000 occasions out of 100,000 samples of 100 elements drawn randomly from population $N(0,1)$, would the cdf for any of the samples be beyond the 0.5% quintiles off any value of the cdf for the population. The sample size is $n=100$.

$$
\mathrm{n}=100, \mathrm{C}=0.99
$$

Figure 15 - Sampling error, $\mathbf{n = 1 0 0 , ~ c = 0 . 9 9}$

Universityo

Strathclyde
Glasgow

Figure 15 shows that since the cdf of a population is never known, the sampling error allows deriving the interval around the sample cdf within which the population cdf can be expected with C probability. The sample size is $\mathrm{n}=100$.

$$
\mathrm{n}=500, \mathrm{C}=0.99
$$

Figure 16-99\% sampling error on the cdf for the population of random variable \mathbf{X}; sample size $\mathrm{n}=500$

Figure 17 - Example of probability distribution for a randomly generated sample of variable X; sample size $\mathbf{n = 5 0 0}$

$$
\mathrm{n}=500, \mathrm{C}=0.99
$$

Figure 18-Cdf population, $\mathrm{n}=500, \mathrm{c}=\mathbf{0 . 9 9}$

Figure 18 shows that the cdf assigned based on the sample of 500 will be contained within the 0.5% quintiles around the cdf for the population, if it is known.

$$
\mathrm{n}=500, \mathrm{C}=0.99,10,000 \text { Monte Carlo (MC) trials }
$$

Figure 19 - $\mathrm{n}=500, \mathrm{c}=\mathbf{0 . 9 9}$, 100000, Monte Carlo trials

Figure 19 shows that a Monte-Carlo experiment confirms that only in about 1,000 occasions out of 100,000 samples of 500 elements drawn randomly from population $N(0,1)$, would the cdf for any of the samples be beyond the 0.5% quintiles off any value of the cdf for the population. The sample size is $n=500$.

$$
\mathrm{n}=500, \mathrm{C}=0.99
$$

Figure 20 - Sampling error, $\mathbf{n = 5 0 0}, \mathbf{c = 0 . 9 9}$

Figure 20 shows that since the cdf of a population is never known, the sampling error allows deriving the interval around the sample cdf within which the population cdf can be expected with C probability. The sample size is $\mathrm{n}=500$.

[^0]: ${ }^{1}$ Also referred to as an equal-tailed Bayesian interval or Jeffrey's prior interval.

