EMSA OP/10/2013

A STUDY ASSESSING THE ACCEPTABLE AND PRACTICABLE RISK LEVEL OF PASSENGER SHIPS RELATED TO DAMAGE STABILITY
Content

- Introduction and overview of the EMSA III studies (Odd Olufsen)
 - Formal Safety Assessment, Risk Models for collision and grounding (Rainer Hamann)
 - Sample ships; design and risk control options (Odd Olufsen)
 - Grounding and combined assessment (Odd Olufsen)
 - Impact assessment (Rainer Hamann)
 - Conclusions and discussion points (Odd Olufsen)
Members of the consortium

- **Shipyards:**
 - EUROYARDS, representing: Meyer Werft, Fincantieri, Meyer Turku, STX-France
- **Designers/Consultants:**
 - Knud E. Hansen AS & Safety at Sea
- **Operators:**
 - Carnival Cruise, Color Line, Royal Caribbean & Stena Line
- **Universities:**
 - National Technical University of Athens, University of Strathclyde & University of Trieste
- **Software developer:**
 - Napa OY
- **Classification Society:**
 - DNV GL
Overview of tasks in the EMSA III project

- Risk acceptance criteria and risk based damage stability
- Evaluation of risk from watertight doors
- Evaluation of risk from grounding
- Damage stability calculations of GOALDS design
- Impact assessment
- Combined assessments
Overview of tasks in the EMSA III project

- Update risk acceptance criteria for FSA
- Verify if current risk level of passenger ships is in ALARP region
- Develop risk model for collision focusing on damage stability
- Evaluate risk from watertight doors
- Develop model for evaluating damage stability with respect to grounding
- Develop risk model for grounding focusing on damage stability

- Develop passenger ship design with increased damage stability regarding collision and grounding accidents -> RCOs
- Cost-benefit assessment of RCOs: CN, GR and CN+GR
- Impact assessment
Content

- Introduction and overview of the EMSA III studies (Odd Olufsen)
- **Formal Safety Assessment, Risk Models for collision and grounding** (Rainer Hamann)
- Sample ships; design and risk control options (Odd Olufsen)
- Risk from watertight doors (Odd Olufsen)
- Grounding and combined assessment (Odd Olufsen)
- Impact assessment (Rainer Hamann)
- Final remarks (Odd Olufsen)
Risk Analysis II

- **Focus:**
 - Passenger ships, i.e. cruise, passenger, RoPax and RoPax-Rail
 - Ships in compliance with current damage stability requirements (reference)
 - Consider only damage stability of ships
 - Optimise designs with respect to damage stability
 - Evaluate the designs with respect to cost-benefit
- **Update of collision risk model**
- **Development of new grounding/contact risk model**

Risk models

Cost-Benefit A.

Recommendation

RCOs
High-level event sequence for collision casualties of passenger ship
- Considers main factors influencing the risk to persons on board
High-level event sequence for grounding and contact casualties of passenger ship

- Contact casualties with potential of penetrating hull and subsequent water ingress
- Only consequences with respect to persons on board are in focus
Cost-benefit assessment

- Risk models are used to determine risk reduction by increased damage stability.
- Risk models are based on experience and numerical models.
- For cost-benefit assessment so-called cost thresholds were calculated by means of risk models, i.e. calculating risk reduction (difference between A-Indices of reference and novel design) and monetary value per avoided fatality.
IMO EG FSA

- EMSA III study was reviewed by IMO EG FSA:
 - The study is for ships ≥ 400 person on board
 - The validity of input data was accepted as well as the expertise of experts participated in the study
 - The essential results are confirmed by an independent analysis

"The group agreed that the study was adequately conducted in accordance with the FSA Guidelines"
Content

- Introduction and overview of the EMSA III studies (Odd Olufsen)
- Formal Safety Assessment, Risk Models for collision and grounding (Rainer Hamann)
- Sample ships; design and risk control options (Odd Olufsen)
- Grounding and combined assessment (Odd Olufsen)
- Impact assessment (Rainer Hamann)
- Final remarks (Odd Olufsen)
EMSA3 Sample ships and design teams
Design variations

- For each sample ship design variations (RCOs) have been developed
- Following modifications have been applied in different combinations
 - Change of breadth and freeboard
 - Improvement of watertight subdivision
 - Different hull form
 - Buoyancy boxes on the car deck
 - Subdivided LLH
- For each RCO the change of A and costs have been calculated
Calculation assumptions

- SOLAS2009 is used as calculation base
 - Assumptions as in Explanatory Notes
 - For RoPax additional new S-wod according SLF55 calculated
 - Draught range based on loading conditions
 - A-class boundaries considered in flooding stages
- Assumptions:
 - The business model is kept constant
 - No significant change of capacity (cargo, cabins)
 - Operational profile kept the same (distance, turn around time)
 - Same methodology to calculate weight and stability
 - Simplified but realistic cost estimations
 - GM limit curve defined based on loading conditions
 - Margins to GM curve are kept constant
- No detailed internal watertight integrity considered
 - Projects are on basic design level
 - No detailed routing of pipes and ducts
Cost-Benefit Assessment

- Cost Benefit Assessments for sample ships are based on:
 - **Investment Costs**
 - Building costs due to enlarged ship (steel, interior systems)
 - Cost impact due to changed equipment (engines, propulsion, thrusters etc)
 - Financing costs
 - **Operational costs**
 - Mainly fuel costs
 - Increased time in port may cause increased speed \rightarrow higher fuel costs
 - Increased maintenance costs
 - **Revenue**
 - Small adjustments of income
 - Reduced probability of total loss results in less costs for scrap
- All costs are calculated in Euro and converted in USD based on exchange rate of 1.35 USD/Euro
- Changes of costs to the society or industry in general due to changed probability of large accidents have not been accounted for
- The assessments have been carried out for:
 - Mean values,
 - all costs reduced by 20 % and
 - all costs increased by 20 %
Fuel oil price development

- Data published by EIA energy outlook have been used as basis for estimating the future trends.

- The current prices for HFO and MGO; 600 USD/t and 900 USD/t, have been obtained using the average reported prices for 2013 and 2014 in Rotterdam using Clarkson Intelligence as a source.

- The price of LSHFO is obtained based on a 20/80 distribution of the HFO and MGO price. This is the distribution that is required in order to obtain a content of 0.5% sulphur.

- Price of LNG is taken as 94.1% of the MGO cost. This is a standard assumption used in analysis based on the LNG supplier’s standard way of pricing where it is referred to that the cost of the LNG should correspond to 80% of the use of MGO.

- The latest reduction of fuel prices (MGO 540 USD/t, HFO 300 USD/t) has not been accounted for.
Baltic RoPax – Meyer Turku & Color Line

<table>
<thead>
<tr>
<th></th>
<th>Length bp (m)</th>
<th>B (m)</th>
<th>T (m)</th>
<th>GT</th>
<th>Number of persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ungraded</td>
<td>232.0</td>
<td>29.0</td>
<td>7.20</td>
<td>60000</td>
<td>3280</td>
</tr>
</tbody>
</table>
Baltic RoPax – Meyer Turku & Color Line

- Global changes (beam, new hullform subdivided double hull on bulkhead deck)
- Effect of LLH

<table>
<thead>
<tr>
<th>Phase</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>Reference design</td>
</tr>
<tr>
<td>Phase 1</td>
<td>B (Option 1)</td>
<td>Breadth increased by 40 cm</td>
</tr>
</tbody>
</table>
| Phase 1 | C (Option 2) | Breadth increased by 20 cm
Freeboard increased by 20 cm |
| Phase 1 | D (Option 3) | Breadth increased by 40 cm
Freeboard increased by 20 cm |
| Phase 1 | E (Option 4) | Breadth increased by 40 cm
Freeboard increased by 40 cm |
| Phase 2 | F (Option 5) | As version D (opt. 3)
subdivided double hull on bulkhead deck |
| Phase 3 | I (Option 6) | As version F (opt. 5)
impact of LLH |
| Phase 3 | J (Option 7) | As version F (opt. 5)
Subdivided Car Deck |
| Phase 3 | K2 (Option 8) | As version F (opt. 5)
No Lower Hold |
| Phase 4 | L (Option 9) | As version F (opt. 5) + 40 cm more breadth
Breadth increased by 80 cm
Freeboard increased by 20 cm
subdivided double hull on bulkhead deck |
Baltic RoPax – Meyer Turku & Color Line

<table>
<thead>
<tr>
<th>Phase</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B (Option 1)</td>
<td>Breadth increased by 40 cm</td>
</tr>
<tr>
<td>1</td>
<td>C (Option 2)</td>
<td>Breadth increased by 20 cm, Freeboard increased by 20 cm</td>
</tr>
<tr>
<td>1</td>
<td>D (Option 3)</td>
<td>Breadth increased by 40 cm, Freeboard increased by 20 cm</td>
</tr>
<tr>
<td>1</td>
<td>E (Option 4)</td>
<td>Breadth increased by 40 cm, Freeboard increased by 40 cm</td>
</tr>
<tr>
<td>2</td>
<td>F (Option 5)</td>
<td>As version D (opt. 3), subdivided double hull on bulkhead deck</td>
</tr>
<tr>
<td>3</td>
<td>I (Option 6)</td>
<td>As version F (opt. 5), impact of LLH</td>
</tr>
<tr>
<td>3</td>
<td>J (Option 7)</td>
<td>As version F (opt. 5), Subdivided Car Deck</td>
</tr>
<tr>
<td>3</td>
<td>K2 (Option 8)</td>
<td>As version F (opt. 5), No Lower Hold</td>
</tr>
<tr>
<td>4</td>
<td>L (Option 9)</td>
<td>As version F (opt. 5) + 40 cm more breadth = Breadth increased by 80 cm, Freeboard increased by 20 cm, subdivided double hull on bulkhead deck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>A</th>
<th>B opt 1</th>
<th>C opt 2</th>
<th>D opt 3</th>
<th>E opt 4</th>
<th>F opt 5</th>
<th>I opt 6</th>
<th>J opt 7</th>
<th>K2 opt 8</th>
<th>L opt 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>required</td>
<td>0.8300</td>
</tr>
<tr>
<td>index R</td>
<td>0.8326</td>
<td>0.8703</td>
<td>0.8670</td>
<td>0.8824</td>
<td>0.8786</td>
<td>0.8997</td>
<td>0.8494</td>
<td>0.184</td>
<td>0.9042</td>
<td>0.9152</td>
</tr>
<tr>
<td>attained</td>
<td>0.0000</td>
<td>0.0377</td>
<td>0.0344</td>
<td>0.0498</td>
<td>0.0460</td>
<td>0.0671</td>
<td>0.0168</td>
<td>0.0858</td>
<td>0.0716</td>
<td>0.0826</td>
</tr>
<tr>
<td>index A_{SLF55}</td>
<td>0.8300</td>
<td>0.9042</td>
<td>0.8300</td>
<td>0.9042</td>
<td>0.8300</td>
<td>0.9042</td>
<td>0.8300</td>
<td>0.9042</td>
<td>0.8300</td>
<td>0.9042</td>
</tr>
<tr>
<td>Change in A</td>
<td>0.0000</td>
<td>0.0377</td>
<td>0.0344</td>
<td>0.0498</td>
<td>0.0460</td>
<td>0.0671</td>
<td>0.0168</td>
<td>0.0858</td>
<td>0.0716</td>
<td>0.0826</td>
</tr>
</tbody>
</table>

Ungraded
Content

- Introduction and overview of the EMSA III studies (Odd Olufsen)
- Formal Safety Assessment, Risk Models for collision and grounding (Rainer Hamann)
- Sample ships; design and risk control options (Odd Olufsen)
- **Grounding and combined assessment** (Odd Olufsen)
- Impact assessment (Rainer Hamann)
- Final remarks (Odd Olufsen)
Approach for determination of A-index for Grounding

Generation of sample of breaches
- Geometrical model of damage
- Probabilistic model of damage characteristics
- Generation of breaches
- Identification of damaged rooms for each breach

Determination of "damage cases"
- Grouping of breaches involving the same (set of) room(s)
- Damage cases with associated "p factors"

Survivability assessment based on static stability calculations
- Static stability calculations
- Survivability factor - "s-factor"

A-index
GROUNDING
Large cruise vessel – Meyer Werft & Carnival

- All grounding RCOs are cost effective
- Some RCO do not comply with SOLAS2009 anymore

<table>
<thead>
<tr>
<th>Version</th>
<th>G2</th>
<th>G3</th>
<th>K3</th>
<th>K4</th>
<th>M1</th>
<th>M2</th>
<th>I3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>reference version</td>
<td>as G2 with wt decks</td>
<td>opt. Version for collision</td>
<td>as K3 with wt decks</td>
<td>double hull increased DB height</td>
<td>as M1 with wt decks</td>
<td>Increased beam, increased freeboard</td>
</tr>
<tr>
<td>SOLAS2009</td>
<td>0.8626</td>
<td>0.8643</td>
<td>0.8754</td>
<td>0.8792</td>
<td>0.8529</td>
<td>0.8747</td>
<td>0.9288</td>
</tr>
<tr>
<td>A Grounding</td>
<td>0.9142</td>
<td>0.9336</td>
<td>0.9543</td>
<td>0.9551</td>
<td>0.9736</td>
<td>0.9707</td>
<td>0.9513</td>
</tr>
</tbody>
</table>

Ungraded
Effects of taking grounding into account in the CBA

Attained Index A (collision) for Risk control Options with and without including the effect from grounding.
Suggested level of R if considering collision only

\[R = 1 - C1 \times \frac{5000}{2.5 \times N + 15225} \]

\[C1 = 0.8 - \frac{0.25}{10,000} \times (10,000 - N) \]

N is the number of persons onboard without consideration of type of LSA
Alternative when grounding is accounted for in the CBA

\[R = 1 - \frac{C1 \times 6200}{4 \times N + 20000} \]

\[C1 = 0.8 - \frac{0.25}{10000} \times (10000 - N) \]

N is the number of persons onboard without consideration of type of LSA
Content

- Introduction and overview of the EMSA III studies (Odd Olufsen)
- Formal Safety Assessment, Risk Models for collision and grounding (Rainer Hamann)
- Sample ships; design and risk control options (Odd Olufsen)
- Risk from watertight doors (Odd Olufsen)
- Grounding and combined assessment (Odd Olufsen)
- Impact assessment (Rainer Hamann)
- Final remarks (Odd Olufsen)
Impact Assessment

- EU impact assessment enlarges the scope in order to cover all “relevant” effects, e.g. additionally to FSA
 - Environmental impact: air pollution, climate change, noise, avoided pollution
- For EMSA III study the impacts of new damage stability requirements for passenger ships were investigated by means of the developed RCOs
- Impact investigation considered all costs quantified in the FSA cost-benefit assessment
- Furthermore investigated, the effects with respect to
 - to environment considering also up- and downstream
 - collision and grounding accidents (e.g. search and rescue, wreck removal)
- Quantification of impacts in terms of Euro and mainly based on information from
 - Studies (EU, EPA ...
 - Project partners
 - Literature research
Impact Assessment

- Positive impacts, e.g.
 - Loss of human life: already considered in CBA
 - Loss of ship: considered in CBA
 - Loss of cargo: for RoPax, small fraction of ship newbuilding price
 - Environmental pollution (fuel oil, cargo): not quantified due to lack of suitable data
 - Wreck removal: considered as a multiple of newbuilding price
 - Loss of reputation/revenue: too uncertain to be considered in IA
 - SAR: not directly related to accident (service provided independent of number of accidents)
Impact Assessment

- Negative impacts
 - Newbuilding costs -> CBA
 - Fuel consumption -> CBA
 - Air pollution: relevant impact for all designs with increased fuel consumption, sensitive to fuel type
 - Climate change: relevant but smaller than air pollution
 - Harbour fees: depending on changes and ship dimensions and calculation basis, relevant only for ships with frequent harbour calls
 - Revenue/benefit: higher CAPEX and OPEX can lead to increased ticket prices or reduced benefit, with possible shift to other transport modes (RoPax). No impact expected for cruise. Too uncertain to quantify.
 - Noise: noise reduction can increase design costs. Too uncertain to quantify.
Impact Assessment: results

Overview of single impact costs for Mediterranean RoPax ship RCOs
Conclusions from impact assessment

- When the external costs are internalised the CAF value is generally increased
- Supports the conclusions from the CBA carried out according to IMO FSA Guidelines
Content

- Introduction and overview of the EMSA III studies (Odd Olufsen)
- Formal Safety Assessment, Risk Models for collision and grounding (Rainer Hamann)
- Sample ships; design and risk control options (Odd Olufsen)
- Risk from watertight doors (Odd Olufsen)
- Grounding and combined assessment (Odd Olufsen)
- Impact assessment (Rainer Hamann)
- Final remarks (Odd Olufsen)
Final remarks

- The reports prepared in the study include information and recommendations for future use in research and development.
Content and Information

- Risk acceptance criteria and risk based damage stability (Task 1 reports):
 - Part 1:
 - risk acceptance criteria of various transport modes
 - methods and setting the value of preventing a fatality (VPF)
 - update of the current FN criteria
 - Part 2:
 - update of Hazid
 - collision risk model
 - sample ships presentation
 - risk control options (RCO for sample ships)
 - cost benefit assessment (CBA)
Content and Information

- Risk from watertight doors (Task 2 report)
 - model for assessment of vulnerability due to WTD
 - risk control options WTD arrangement (e.g. number and category)

- Risk from grounding (Task 3 report)
 - probabilistic models for bottom and side damage
 - risk model grounding and contact damages
 - new software
 - sample ship calculations and RCOs
Content and Information

- **Combined assessment; collision, watertight doors and grounding (Task 4 report)**
 - combined CBA of RCO develop for collision and grounding respectively
 - recommendations for level of R

- **Impact assessment in compliance with the EC IA guidelines (Task 5 reports)**
 - Part 1
 - Impact assessments of RCOs developed in previous tasks.
 - Part 2
 - Comparison between IMO FSA and the EC IA

- **Damage stability calculations of GOALDS RoPax Designs (Task 6 Report)**
 - Attained index A based on formulation of s agreed at SLF55.
Thank you for your kind attention

Odd.Olufsen@dnvgl.com

www.dnvgl.com

SAFER, SMARTER, GREENER

Ungraded