SUSTAINABLE & SMART MOBILITY STRATEGY

FuelEU Maritime

FuelEU Maritime Regulation
European Commission
Directorate-General for Mobility and Transport
Unit D.1 – Maritime Transport and Logistics
Fitfor55 maritime instrument

<table>
<thead>
<tr>
<th>Fitfor55 maritime instrument</th>
<th>In short/ Objective</th>
</tr>
</thead>
</table>
| **ETS** – Extension of the Emission Trading Scheme to maritime transport | • Carbon tax/ Trading scheme
• Promote Energy Efficiency and Energy Transition |
| **AFIR** – Alternative Fuels Infrastructure Regulation | • Require EU ports to develop shore-power
• Bunkering infrastructure for alternative fuels. |
| **FuelEU Maritime Regulation** | • Promote the use of renewable and low-carbon fuels in maritime transport. |
| **Renewable Energy Directive (REDIII)** | • Renewable Energy targets for transport sector
• Sustainability criteria and Certification framework for renewable fuels. |
Abating maritime emissions requires:

- Improving energy efficiency ➔ **using less fuel**
- Using renewable and low carbon fuels ➔ **using cleaner fuels**

Complementary FuelEU – ETS – AFIR - ETD

- ETS promotes energy savings while FuelEU addresses **fuel technology**.
- FuelEU addresses fuel demand, RED fuel supply and AFIR fuel distribution
- Taxation levels for renewable and low-carbon fuels and for electricity at berth are consistent with FuelEU goals.
• Focus on fuel and on demand – promotion of uptake of renewable and low-carbon fuels for maritime transport – complement to Energy Efficiency

• Technology-neutral approach: maritime operators will need to use an increasing proportion of zero and low carbon sustainable fuels, without obligation to use a specific technology

• Establishes target reduction % for the yearly average GHG intensity of the energy used on-board (gCO2eq/MJ)

<table>
<thead>
<tr>
<th>Year</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2045</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>-2%</td>
<td>-6%</td>
<td>-14,5%</td>
<td>-31%</td>
<td>-62%</td>
<td>-80%</td>
</tr>
</tbody>
</table>

• Exemptions: Small islands < 200,000 residents; PSO connections between island MS and another MS and between an island and the mainland of the same MS; outermost regions; transhipment ports; ice class ships and ships navigating in ice.

• Scope: ships above 5000 GT, intra-EU traffic + 50% international, EU ports (same as for ETS)

• Additional requirement for Zero-Emission at berth (OPS and alternative zero-emission technologies) - compulsory as of 2030 for container and passenger vessels (some exemptions up to 2035)

• Inclusion of CO2, methane and nitrous oxide on a full Well-to-Wake calculation: allows fair comparison of fuels

\[
\text{GHGe} [\text{gCO2eq}] = (\text{WtT (fuel, electricity)} + \text{TtW (combustion, slip)})
\]

• Flexibility mechanism via banking and borrowing: surpluses and (small) deficits can be carried over to the next year

• Voluntary and open pooling mechanism to reward/ incentivise overachievers and encourage the rapid deployment of the most advanced options

• Non-compliance – deterrent financial penalty

• Monitoring and Reporting is based on MRV approach, with some additional data (e.g. calculation of Compliance Balance)
Technologies for compliance with FuelEU Maritime

Onboard Carbon Capture and Storage
Use of OCCS not yet recognized as an option for FuelEU compliance – included in the Revision for future assessment and consideration – technology needs to be demonstrated.

Zero Emission Technologies – Auxiliary Power Units

Solar Sails – Rigid sails – Photovoltaic Panels
Benefit under FuelEU – Wind Reward Factor + Energy supplied by renewable/alternative source of power.

Sails – Rigid sails
Benefit under FuelEU – Wind Reward Factor.

Onshore Power Supply
Connection to OPS will benefit of GHG intensity = ‘0’ gCO2e/MJ – zero WtT emission factor for OPS electricity.

Non-CO2 Tank-to-Wake emissions
Technologies for abatement of non-CO2 emissions may become relevant to improve GHG performance of energy conversion systems/engines.

Improved Hull Paints
Improvement of Energy Efficiency – Not a measure to improve GHG intensity of the Energy Used.

Bulbous bow
Improvement of Energy Efficiency – Not a measure to improve GHG intensity of the Energy Used.

Onboard Electrical Energy Storage
Onboard battery system may be used to supply zero-emission energy while at berth. Possible to charge at sea and be used at berth. If used only for energy efficiency they will have limited value for FuelEU.

Optimization of Propeller – Rudder – Aft Shape
Improvement of Energy Efficiency – Not a measure to improve GHG intensity of the Energy Used.

Advanced Multi-fuel engines/ Fuel Cells
Multi-Fuel Engines or Fuel Cells, with technologies for methane slip mitigation.

Air Bubbles – Hull Lubrication
Improvement of Energy Efficiency – Not a measure to improve GHG intensity of the Energy Used.

Renewable and Low-Carbon Fuels
Use of renewable and low carbon fuels – direct reduction of GHG intensity of the energy used.

ZET

Air Bubbles

Zero Emission Technologies
Auxiliary Power Units – Benefit under FuelEU – Wind Reward Factor + Energy supplied by renewable/alternative source of power.

Onboard Electrical Energy Storage
Onboard battery system may be used to supply zero-emission energy while at berth. Possible to charge at sea and be used at berth. If used only for energy efficiency they will have limited value for FuelEU.

Non-CO2 Tank-to-Wake emissions
Technologies for abatement of non-CO2 emissions may become relevant to improve GHG performance of energy conversion systems/engines.

Improved Hull Paints
Improvement of Energy Efficiency – Not a measure to improve GHG intensity of the Energy Used.

Bulbous bow
Improvement of Energy Efficiency – Not a measure to improve GHG intensity of the Energy Used.

Onboard Electrical Energy Storage
Onboard battery system may be used to supply zero-emission energy while at berth. Possible to charge at sea and be used at berth. If used only for energy efficiency they will have limited value for FuelEU.

Non-CO2 Tank-to-Wake emissions
Technologies for abatement of non-CO2 emissions may become relevant to improve GHG performance of energy conversion systems/engines.

Improved Hull Paints
Improvement of Energy Efficiency – Not a measure to improve GHG intensity of the Energy Used.

Bulbous bow
Improvement of Energy Efficiency – Not a measure to improve GHG intensity of the Energy Used.
Containerships and passenger ships (>5,000GT) required to connect to onshore power supply, securely moored at berth, **in all AFIR ports, as from 1 January 2030.**

Also, **in all non-AFIR ports, as from 1 January 2035, for all ports that develop OPS capacity.**

In all **non-AFIR ports** from 1 January 2030, if decided by Member States.

Ships at anchorage not covered, but voluntary opt-in provision for MS.
Eligibility of Renewable and Low-Carbon Fuels

(Biofuels):
- **Sustainability** and GHG saving criteria - RED Article 29
- No “food-and-feed” crop Biofuels

(RFNBOs and Recycled Carbon Fuels):
- GHG saving threshold - RED Article 27(2)

(Low-Carbon Synthetic Fuels):
Revised (recast) Gas Directive

Fuels not meeting criteria treated as fossil fuels
GHG Fuel Certification

- **Feedstock**
 - Biomass
 - Renewable

- **Production**
 - Biofuels
 - RFNBOs
 - Low-Carbon Synthetic Fuels

- **Distribution**
 - How can distribution be considered (should be at all?)

- **Blending**
 - Blending with fossil fuels will be the predominant case

- **Bunkering**
 - How to include Bunkering in the Certification of the Fuel

RED Certification – Proof of Sustainability

FuelEU – GHG Fuel Certification

- **GHG Fuel Certification** – Essential for level playing field
- Fuel Certificate – to be **submitted together with BDN**
- Need to include **GHG savings for each fuel product** supply
- Blends need to provide relevant information to **ALL parts blended**
- Fuel Certification for Bunkering **outside EU – OK!** – Fuel Certification Companies
Governance:
- Monitoring and reporting is based on MRV approach – MRV data input.
- FuelEU-specific additional data (e.g. calculation of compliance balance, recording of penalties, exchange and notifications between user groups)
- **Monitoring Template → FuelEU Report → Verification Report**

FuelEU Penalties:
- Deterrent financial penalty in case of non-compliance with GHG intensity target.
- Compliance Balance (Function of deficit/surplus x energy used)
- Separate penalty in case of non-compliance with requirements for additional Zero-Emissions at berth.
- Allocation of revenues from penalties to MS budgets.

FuelEU Database:
- Central IT system to support compliance and functioning of the Regulation.
- Associated to THETIS-MRV – “FuelEU Module”
- Developed, hosted and managed by EMSA

Report and review:
- Extensive report and review clause with the first reporting deadline on 31 December 2027 and every five years thereafter.
- Commitment to look in the future at:
 - Onboard Carbon Capture and Storage
 - Black Carbon
 - Geographic Scope and Ship Size
 - Alignment with IMO.
Secondary Legislation

- 14 Implementing and Delegated Acts
- Important building blocks for implementation of FuelEU
- Covering OPS, updates to Annex-II, RFNBOs, Zero Emission Technologies, Governance, FuelEU database, amongst others.

FAQ/HelpDesk/Communication

- FAQ under development addressing most pressing questions in support of implementations
- HelpDesk: Fitfor55@emsa.europa.eu
- Several Events under planning to reach out to stakeholders (webinars, etc)

RLCF Alliance
Renewable and Low-Carbon Fuels Alliance

- Focus on uptake of availability and scalability of renewable and low carbon fuels.
- 200+ members, including operators, fuel suppliers, member states, etc.
- Maritime Roundtable focused on forecasting low-GHG marine fuel demand, in accordance with the FuelEU GHG intensity reduction curve.

Other Fitfor55

- Implementation of other Fitfor55 waterborne instruments will be decisive for successful FuelEU implementation
- Interdependency mainly on AFIR (for shore-power availability) and in RED (for fuel certification)
- ETS implementation will also present important interdependencies, notably regarding the mitigation of risk of re-routing.

ESSF
European Sustainable Shipping Forum

- Sub-group on Sustainable Alternative Power for Shipping working on FuelEU implementation
- Workstreams on Zero Emission Technologies, GHG Fuel Certification, Certification of Engines for lower methane emissions

FuelEU Maritime
Dimensions of FuelEU Implementation

- EMSA supporting with Governance aspects of the FuelEU
- FuelEU Data Base currently under development – will be the “heart” of the Implementation
Questions to:

Fitfor55@emsa.europa.eu